dimanche 10 septembre 2017

Prédiction du prix de la bourse

Attention: Ce code ne fonctionne pas dans le système d'exploitation CUI, ce qui signifie que vous ne pouvez pas exécuter ce programme avec une virtual box + vagrant (sans environnement GUI).
Avertissement: Ce code vise à partager publiquement des exemples de code. Nous déclinons toutes responsabilité en cas de perte fiancière.

Créer un dossier nommé "csv".

Dans le dossier "csv", mettre ces fichiers. Ceux-ci sont les données de prix de la bourse japonaise.
Télécharger les données: https://github.com/shunakanishi/japanese_stockprice

Maintenant, aller dans le premier répertoire et créer un fichier de python 3.
Et insérer le code suivant:
#-*- coding: utf-8 -*-
import numpy
import pandas
import matplotlib.pyplot as plt

from sklearn import preprocessing
from keras.models import Sequential
from keras.models import model_from_json
from keras.layers.core import Dense, Activation
from keras.layers.recurrent import LSTM
import keras.backend.tensorflow_backend as KTF
import os.path

class Prediction :

  def __init__(self):
    self.length_of_sequences = 10
    self.in_out_neurons = 1
    self.hidden_neurons = 300


  def load_data(self, data, n_prev=10):
    X, Y = [], []
    for i in range(len(data) - n_prev):
      X.append(data.iloc[i:(i+n_prev)].as_matrix())
      Y.append(data.iloc[i+n_prev].as_matrix())
    retX = numpy.array(X)
    retY = numpy.array(Y)
    return retX, retY


  def create_model(self, f_model, model_filename, weights_filename) :
    print(os.path.join(f_model,model_filename))
    if os.path.isfile(os.path.join(f_model,model_filename)):
      print('Saved parameters found. I will use this file...')
      model = Sequential()
      model.add(LSTM(self.hidden_neurons, \
              batch_input_shape=(None, self.length_of_sequences, self.in_out_neurons), \
              return_sequences=False))
      model.add(Dense(self.in_out_neurons))
      model.add(Activation("linear"))
      model.compile(loss="mape", optimizer="adam")
      model.load_weights(os.path.join(f_model,weights_filename))
    else:
      print('Saved parameters Not found. Creating new one...')
      model = Sequential()
      model.add(LSTM(self.hidden_neurons, \
              batch_input_shape=(None, self.length_of_sequences, self.in_out_neurons), \
              return_sequences=False))
      model.add(Dense(self.in_out_neurons))
      model.add(Activation("linear"))
      model.compile(loss="mape", optimizer="adam")
    return model


  def train(self, f_model, model_filename, weights_filename, X_train, y_train) :
    model = self.create_model(f_model, model_filename, weights_filename)
    # Learn
    model.fit(X_train, y_train, batch_size=10, epochs=15)
    return model


if __name__ == "__main__":

  f_log = './log'
  f_model = './model/stockprice'
  model_filename = 'stockprice_model.json'
  yaml_filename = 'stockprice_model.yaml'
  weights_filename = 'stockprice_model_weights.hdf5'

  prediction = Prediction()

  # Data
  data = None
  for year in range(2007, 2017):
    data_ = pandas.read_csv('csv/indices_I101_1d_' + str(year) +  '.csv')
    data = data_ if (data is None) else pandas.concat([data, data_])
  data.columns = ['date', 'open', 'high', 'low', 'close']
  data['date'] = pandas.to_datetime(data['date'], format='%Y-%m-%d')
  # Data of closing price
  data['close'] = preprocessing.scale(data['close'])
  data = data.sort_values(by='date')
  data = data.reset_index(drop=True)
  data = data.loc[:, ['date', 'close']]

  # 20% of the data is used as test data.
  split_pos = int(len(data) * 0.8)
  x_train, y_train = prediction.load_data(data[['close']].iloc[0:split_pos], prediction.length_of_sequences)
  x_test,  y_test  = prediction.load_data(data[['close']].iloc[split_pos:], prediction.length_of_sequences)

  old_session = KTF.get_session()

  model = prediction.train(f_model, model_filename, weights_filename, x_train, y_train)

  predicted = model.predict(x_test)
  json_string = model.to_json()
  open(os.path.join(f_model,model_filename), 'w').write(json_string)
  yaml_string = model.to_yaml()
  open(os.path.join(f_model,yaml_filename), 'w').write(yaml_string)
  print('save weights')
  model.save_weights(os.path.join(f_model,weights_filename))
  KTF.set_session(old_session)
  result = pandas.DataFrame(predicted)
  result.columns = ['predict']
  result['actual'] = y_test
  result.plot()
  plt.show()

Pour enregistrer le model et les paramètres, créer un dossier nommé "model" et un dossier nommé "log".


Et dans le dossier "model", créer un dossier nommé "stockprice".

Et faire ce commande:
$ sudo python3 stockprice.py


Le résultat

Le model et les paramètres entraîné sont enregistré dans le dossier "model" -> "stockprice". 

Vous pouvez obtenir des donnes de bourse:

Des données de Nikkei
https://finance.yahoo.com/quote/%5EN225/history?ltr=1

Des données de NY Dow
https://finance.yahoo.com/quote/%5EDJI/history?ltr=1

Des données de Nasdaq
https://finance.yahoo.com/quote/%5EIXIC/history?ltr=1

Et enregistrez les donnes comme "stock.csv" dans le dossier de csv.

Maintenant ouvrez le fichier de "stockprice.py" et copier-coller ça dans le fichier:
#-*- coding: utf-8 -*-
import numpy
import pandas
import matplotlib.pyplot as plt
from decimal import *
import sys
from keras.models import load_model
from sklearn import preprocessing
from sklearn.preprocessing import StandardScaler
from keras.models import Sequential
from keras.models import model_from_json
from keras.layers.core import Dense, Activation
from keras.layers.recurrent import LSTM
import keras.backend.tensorflow_backend as KTF
import os.path
from datetime import datetime, timedelta

class Prediction :

  def load_data(self, data, scaler):
    # Data of closing price
    scaler.fit(data[['Close']])
    price_data = data[['Close']]
    data['Close'] = scaler.transform(data[['Close']])
    data = data.sort_values(by='Date')
    data = data.reset_index(drop=True)
    data = data.loc[:, ['Date', 'Close']]

    X, Y = [], []
    Dates = []
    Prices = []
    close_data = data[['Close']]
    date_data = data[['Date']]
    for i in range(len(close_data) - 10):
      if i+11 < len(close_data):
        Dates.append(date_data.iloc[[i+11]].iloc[0]['Date'])
        Prices.append(price_data.iloc[[i+11]].iloc[0]['Close'])
      else:
        Dates.append(date_data.iloc[[i+10]].iloc[0]['Date']+timedelta(days=1))
        Prices.append('Not applicable.')
      X.append(close_data.iloc[i:(i+10)].as_matrix())
      Y.append(close_data.iloc[i+10].as_matrix())
    retX = numpy.array(X)
    retY = numpy.array(Y)
    return retX, retY, Dates, Prices


  def create_model(self, f_model, model_filename):
    print(os.path.join(f_model,model_filename))
    if os.path.isfile(os.path.join(f_model,model_filename)):
      print('Saved parameters found. I will use this file...')
      model = load_model(os.path.join(f_model,model_filename))
    else:
      print('Saved parameters weren\'t found')
      return
    return model

if __name__ == "__main__":

  f_log = './'
  f_model = './'
  model_filename = 'stockprice_model.hdf5'

  prediction = Prediction()

  # Data
  data = None
  try:
    csv_loc = str(sys.argv[1])
  except NameError:
    print("Please give a location of the csv file.")
  if(csv_loc == ""):
    print("Please give a location of the csv file.")
  print(csv_loc)
  data = pandas.read_csv(csv_loc)
  data = data.drop('Volume',axis=1)
  data = data.drop('Adj Close',axis=1)

  data.columns = ['Date', 'Open', 'High', 'Low', 'Close']
  data['Date'] = pandas.to_datetime(data['Date'])
  print(data)
  scaler = StandardScaler()
  x_test, y_test,  Dates, Prices = prediction.load_data(data, scaler)

  model = prediction.create_model(f_model, model_filename)

  predicted = model.predict(x_test, verbose=1)
  FalseResult = 0
  TrueResult = 0
  for idx,p in enumerate(predicted):
    print('Date:' + str(Dates[idx].year) + '/' + str(Dates[idx].month) + '/' + str(Dates[idx].day) + ', Closing price (Predicted): '+ str(float(scaler.inverse_transform(p))))
    print('Date:' + str(Dates[idx].year) + '/' + str(Dates[idx].month) + '/' + str(Dates[idx].day) + ', Closing price (Actual): '+ str(Prices[idx]))
    dif1 = 0
    dif2 = 0
    dif3 = 0
    was_high_low_correct = False
    if idx > 0 and not isinstance(Prices[idx], str) :
      dif1 = float(scaler.inverse_transform(p)) - float(Prices[idx])
      dif2 = float(Prices[idx-1]) - float(Prices[idx])
      dif3 = float(Prices[idx-1]) - float(scaler.inverse_transform(p))
      if (dif2 < 0 and dif3 < 0) or (dif2 > 0 and dif3 > 0) or (dif2 == 0 and dif3 == 0):
        was_high_low_correct = True
    else:
      dif1 = 'Not applicable.'
      dif2 = 'Not applicable.'
      dif3 = 'Not applicable.'
      was_high_low_correct = 'Not applicable.'
    print('Difference between actual and previous price    :' + str(dif2))
    print('Difference between predicted and previous price :' + str(dif3))
    print('Prediction of high and low was correct?         : ' + str(was_high_low_correct))
    print('Difference between predicted and actual price   : ' + str(dif1))
    print('')
    if was_high_low_correct :
      TrueResult = TrueResult + 1
    else:
      FalseResult = FalseResult + 1
  print('Num of True: ' + str(TrueResult))
  print('Num of False: ' + str(FalseResult))
  print('Rate of true: ' + str((TrueResult/(FalseResult+TrueResult))*100) + '%')
  result = pandas.DataFrame(scaler.inverse_transform(predicted))
  result.columns = ['predict']
  result['actual'] = scaler.inverse_transform(y_test)
  result.plot()
  plt.show()

Et exécutez le script:
$ sudo python3 stockprice.py downloaded_stockprice.csv

Et l'apprentissage va démarrer.

Aucun commentaire:

Enregistrer un commentaire