Et, pour le faire fonctionner, nous avons besoin de créer "animal" dossier.
Et "train" et "validate" dossiers dans le "animal" dossier.
Dans les "train" et "validate" dossiers, les catégories d'animal: "cat" et "dog".
Dans les dossiers, les photos de chat et chien.
Vous avez besoin de utiliser différentes photos pour les photos de "train" et de "validate".
Enregistrer ces lignes de code comme "animal.py" et faire "python3.5 aninal.py" . Ce code enregistre le modelé avec les poids appris. model.save enregistre le modelé (Le document de Keras).
from __future__ import print_function
import numpy as np
import keras
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import Activation, Dropout, Flatten, Dense
from keras.preprocessing.image import ImageDataGenerator
from keras.models import model_from_json
from keras.layers import Dense, Dropout, Activation, AlphaDropout
from keras.preprocessing.text import Tokenizer
import keras.backend.tensorflow_backend as KTF
import tensorflow as tf
import os.path
f_log = './log'
f_model = './'
weights_filename = 'animal_model.hdf5'
model_filename = weights_filename
batch_size = 32
epochs = 5
nb_validation_samples = 14000
old_session = KTF.get_session()
print('Building model...')
session = tf.Session('')
KTF.set_session(session)
if os.path.isfile(os.path.join(f_model,weights_filename)):
print('\n\n\n\nSaved parameters found. I will use this file...')
print(os.path.join(f_model,model_filename + '\n\n\n\n'))
model_hdf5 = os.path.join(f_model, model_filename)
model = keras.models.load_model(model_hdf5)
model.summary()
else:
print('\n\n\n\n' + os.path.join(f_model,weights_filename))
print('Saved parameters Not found. Creating new model...\n\n\n\n')
model = Sequential()
model.add(Conv2D(32, 3, 3, input_shape=(200, 200, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, 3, 3))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(2))
model.add(Activation('softmax'))
model.summary()
model.compile(loss='categorical_crossentropy',
optimizer='adam',
metrics=['accuracy'])
train_datagen = ImageDataGenerator(
rescale=1.0 / 255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
test_datagen = ImageDataGenerator(rescale=1.0 / 255)
train_generator = train_datagen.flow_from_directory(
'animals/train',
target_size=(200, 200),
batch_size=batch_size,
class_mode='categorical')
validation_generator = test_datagen.flow_from_directory(
'animals/validation',
target_size=(200, 200),
batch_size=batch_size,
class_mode='categorical')
tb_cb = keras.callbacks.TensorBoard(log_dir=f_log, histogram_freq=0)
cp_cb = keras.callbacks.ModelCheckpoint(filepath = os.path.join(f_model,weights_filename), monitor='val_loss', verbose=1, save_best_only=True, mode='auto')
cbks = [tb_cb, cp_cb]
history = model.fit_generator(
train_generator,
steps_per_epoch=np.ceil(nb_validation_samples/batch_size),
epochs=epochs,
validation_data=validation_generator,
validation_steps=np.ceil(nb_validation_samples/batch_size),
)
score = model.evaluate_generator(validation_generator, nb_validation_samples/batch_size)
print('')
print('Test score:', score[0])
print('Test accuracy:', score[1])
print('save weights')
model.save(os.path.join(f_model,weights_filename))
KTF.set_session(old_session)
import numpy as np
import keras
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import Activation, Dropout, Flatten, Dense
from keras.preprocessing.image import ImageDataGenerator
from keras.models import model_from_json
from keras.layers import Dense, Dropout, Activation, AlphaDropout
from keras.preprocessing.text import Tokenizer
import keras.backend.tensorflow_backend as KTF
import tensorflow as tf
import os.path
f_log = './log'
f_model = './'
weights_filename = 'animal_model.hdf5'
model_filename = weights_filename
batch_size = 32
epochs = 5
nb_validation_samples = 14000
old_session = KTF.get_session()
print('Building model...')
session = tf.Session('')
KTF.set_session(session)
if os.path.isfile(os.path.join(f_model,weights_filename)):
print('\n\n\n\nSaved parameters found. I will use this file...')
print(os.path.join(f_model,model_filename + '\n\n\n\n'))
model_hdf5 = os.path.join(f_model, model_filename)
model = keras.models.load_model(model_hdf5)
model.summary()
else:
print('\n\n\n\n' + os.path.join(f_model,weights_filename))
print('Saved parameters Not found. Creating new model...\n\n\n\n')
model = Sequential()
model.add(Conv2D(32, 3, 3, input_shape=(200, 200, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, 3, 3))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(2))
model.add(Activation('softmax'))
model.summary()
model.compile(loss='categorical_crossentropy',
optimizer='adam',
metrics=['accuracy'])
train_datagen = ImageDataGenerator(
rescale=1.0 / 255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
test_datagen = ImageDataGenerator(rescale=1.0 / 255)
train_generator = train_datagen.flow_from_directory(
'animals/train',
target_size=(200, 200),
batch_size=batch_size,
class_mode='categorical')
validation_generator = test_datagen.flow_from_directory(
'animals/validation',
target_size=(200, 200),
batch_size=batch_size,
class_mode='categorical')
tb_cb = keras.callbacks.TensorBoard(log_dir=f_log, histogram_freq=0)
cp_cb = keras.callbacks.ModelCheckpoint(filepath = os.path.join(f_model,weights_filename), monitor='val_loss', verbose=1, save_best_only=True, mode='auto')
cbks = [tb_cb, cp_cb]
history = model.fit_generator(
train_generator,
steps_per_epoch=np.ceil(nb_validation_samples/batch_size),
epochs=epochs,
validation_data=validation_generator,
validation_steps=np.ceil(nb_validation_samples/batch_size),
)
score = model.evaluate_generator(validation_generator, nb_validation_samples/batch_size)
print('')
print('Test score:', score[0])
print('Test accuracy:', score[1])
print('save weights')
model.save(os.path.join(f_model,weights_filename))
KTF.set_session(old_session)
Le fichier du modelé
Aucun commentaire:
Enregistrer un commentaire